
Online Intrusion Alert Aggregation Using  
DGDSM Approach 

 
J.Poongodi1, Mrs.C.Vimalarani2, Dr.S.Karthik3 

 

CSE, SNS College of Technology, 
 Coimbatore,India. 

 
 

Abstract: - Alert aggregation is an important subtask of 
intrusion detection. The goal is to identify and to cluster 
different alerts—produced by low-level intrusion detection 
systems, firewalls, etc.—belonging to a specific attack instance 
which has been initiated by an attacker at a certain point in 
time. Thus, meta-alerts can be generated for the clusters that 
contain all the relevant information whereas the amount of data 
(i.e., alerts) can be reduced substantially. Meta-alerts may then 
be the basis for reporting to security experts or for 
communication within a distributed intrusion detection system. 
We propose a novel technique for online alert aggregation which 
is based on a dynamic, probabilistic model of the current attack 
situation. Basically, it can be regarded as a data stream version 
of a maximum likelihood approach for the estimation of the 
model parameters. With three benchmark data sets, we 
demonstrate that it is possible to achieve reduction rates of up to 
99.96 percent while the number of missing meta-alerts is 
extremely low. In addition, meta-alerts are generated with a 
delay of typically only a few seconds after observing the first 
alert belonging to a new attack instance. 
 
Index Terms—Intrusion detection, alert aggregation, generative 
modeling, data stream algorithm. 
 

1. INTRODUCTION 
INTRUSION detection systems (IDS) are besides other 
protective measures such as virtual private networks, 
authentication mechanisms, or encryption techniques very 
important to guarantee information security. They help to 
defend against the various threats to which networks and 
hosts are exposed to by detecting the actions of attackers or 
attack tools in a network or host-based manner with misuse or 
anomaly detection techniques. 
At present, most IDS are quite reliable in detecting suspicious 
actions by evaluating TCP/IP connections or log files, for 
instance. Once an IDS finds a suspicious action, it 
immediately creates an alert which contains information 
about the source, target, and estimated type of the attack (e.g., 
SQL injection, buffer overflow, or denial of service). As the 
intrusive actions caused by a single attack instance which is 
the occurrence of an attack of a particular type that has been 
launched by a specific attacker at a certain point in time—are 
often spread over many network connections or log file 
entries, a single attack instance often results in hundreds or 
even thousands of alerts.  
 
 

In our opinion, a “perfect” IDS should be situation-aware  in 
the sense that at any point in time it should “know” what is 
going on in its environment regarding attack instances (of 
various types) and attackers. In this paper, we make an 
important step toward this goal by introducing and evaluating 
a new technique for alert aggregation. Alerts may originate 
from low-level IDS such as those mentioned above, from 
firewalls (FW), etc. Alerts that belong to one attack instance 
must be clustered together and meta- alerts must be generated 
for these clusters. The main goal is to reduce the amount of 
alerts substantially without losing any important information 
which is necessary to identify ongoing attack instances. We 
want to have no missing metaalerts, but in turn we accept 
false or redundant meta-alerts to a certain degree. 
This problem is not new, but current solutions are typically 
based on a quite simple sorting of alerts, e.g., according to 
their source, destination, and attack type. Under real 
conditions such as the presence of classification errors of the 
low-level IDS (e.g., false alerts), uncertainty with respect to 
the source of the attack due to spoofed IP  addresses, or 
wrongly adjusted time windows, for instance, such an 
approach fails quite often.  
 
Our approach has the following distinct properties: 
 It is a generative modeling approach  using 

probabilistic methods. Assuming that attack instances 
can be regarded as random processes “producing” alerts, 
we aim at modeling these processes using approximative 
maximum likelihood parameter estimation techniques. 
Thus, the beginning as well as the completion of attack 
instances can be detected. 

 It is a data stream approach, i.e., each observed alert is 
processed only a few times. Thus, it can be applied 
online and under harsh timing constraints. 

 
2 A NOVEL ONLINE ALERT AGGREGATION TECHNIQUES 

In this section, we describe our new alert aggregation 
approach which is—at each point in time—based on a 
probabilistic model of the current situation.  
2.1 Collaborating Intrusion Detection Agents 
In our work, we focus on a system of structurally very similar 
so-called intrusion detection (ID) agents. Through self-
organized collaboration, these ID agents form a distributed 
intrusion detection system (DIDS).  
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Fig. 1 outlines the layered architecture of an ID agent: The 
sensor layer provides  the interface to the network and the 
host on which the agent resides. Sensors acquire raw data 
from both the network and the host, filter incoming data, and 
extract interesting and potentially valuable (e.g., statistical) 
information which is needed to construct an appropriate 
event. At the detection layer, different detectors, e.g., 
classifiers trained with machine learning techniques such as 
support vector machines (SVM) or conventional rule-based 
systems such as Snort, assess these events and search for 
known attack signatures (misuse detection) and suspicious 
behavior (anomaly detection). In case of attack suspicion, 
they create alerts which are then forwarded to the alert 
processing layer.  
The overall architecture of the distributed intrusion detection 
system and a framework for large-scale simulations are 
described in] in more detail.  

In our layered ID agent architecture, each layer assesses, 
filters, and/or aggregates information produced by a lower 
layer. Thus, relevant information gets more and more 
condensed and certain, and, therefore, also more valuable. 
We aim at realizing each layer in a way such that the recall of 
the applied techniques is very high, possibly at the cost of a 
slightly poorer precision . In other words, with the alert 
aggregation module—on which we focus in this paper—we 
want to have a minimal number of missing meta-alerts (false 
negatives) and we accept some false meta alerts (false 
positives) and redundant meta-alerts in turn. 
2.2 Offline Alert Aggregation 
In this section, we introduce an offline algorithm for alert 
aggregation which will be extended to a data stream 
algorithm for online aggregation in next Section.  
Assume that a host with an ID agent is exposed to a certain 
intrusion situation as sketched in Fig. 2: One or several 
attackers launch several attack instances belonging to various 
attack types. The attack instances each cause a number of 
alerts with various attribute values. Only two of the attributes 
are shown and the correspondence of alerts and (true or 
estimated) attack instances is indicated by different symbols. 
Fig. 2a shows a view on the “ideal world” which an ID agent 
does not have. The agent only has observations of the 
detectors (alerts) in the attribute space without attack instance 
labels as outlined in Fig. 2b. The task of the alert aggregation 
module is now to estimate the assignment to instances by 
using the unlabeled observations only and by analyzing the 
cluster structure in the attribute space. That is, it has to 
reconstruct the attack situation. Then, meta-alerts can be 
generated that are basically an abstract description of the 
cluster of alerts assumed to originate from one attack 
instance. Thus, the amount of data is reduced substantially 
without losing important information. Fig. 2c shows the result 
of a reconstruction of the situation. There may be different 
potentially problematic situations: 
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1. False alerts are not recognized as such and wrongly 
assigned to clusters: This situation is acceptable as long 
as the number of false alerts is comparably low. 

2. True alerts are wrongly assigned to clusters: This 
situation is not really problematic as long as the majority 
of alerts belonging to that cluster is correctly assigned. 
Then, no attack instance is missed. 

3. Clusters are wrongly split: This situation is undesired but 
clearly unproblematic as it leads to redundant meta-alerts 
only. Only the data reduction rate is lower, no attack  
instance is missed. 

4. Several clusters are wrongly combined into one: This 
situation is definitely  problematic as attack instances 
may be missed.  

 
2.3 Data Stream Alert Aggregation 
In this section, we describe how the offline approach is 
extended to an online approach working for dynamic attack 
situations. 
Assume that in the environment observed by an ID agent 
attackers initiate new attack instances that cause alerts for a 
certain time interval until this attack instance is completed. 
Thus, at any point in time the ID agent—which is assumed to 
have a model of the current situation, cf. Fig. 3a—has several 
tasks, cf. Fig. 3b: 
1. Component adaption: Alerts associated with already 

recognized attack instances must be identified as such 
and assigned to already existing clusters while adapting 
the respective component parameters. 

2. Component creation (novelty detection): The occurrence 
of new attack instances must be stated. New components 
must be parameterized accordingly.  

3. Component deletion (obsoleteness detection): The 
completion of attack instances must be detected and the 
respective components must be deleted from the model. 

That is, the ID agent must be situation-aware and try to keep 
his model of the current attack situation permanently up 
to date see Fig. 3c. 

 
 
 

2.4 Meta-Alert Generation and Format 
With the creation of a new component, an appropriate 
metaalert that represents the information about the 
component in an abstract way is created. Every time a new 
alert is added to a component, the corresponding meta-alert is 
updated incrementally, too. That is, the meta-alert “evolves” 
with the component. Meta-alerts may be the basis for a whole 
set further tasks (cf. Fig. 1): .  
 Sequences of meta-alerts may be investigated further in 

order to detect more complex attack scenarios (e.g., by 
means of hidden Markov models). 

 Meta-alerts may be exchanged with other ID agents in 
order to detect distributed attacks such as one-to many 
attacks. 

 Based on the information stored in the meta-alerts, 
reports may be generated to inform a human security 
expert about the ongoing attack situation. 

Meta-alerts could be used at various points in time from the 
initial creation until the deletion of the corresponding 
component (or even later). For instance, reports could be 
created immediately after the creation of the component or—
which could be more preferable in some cases—a sequence 
of updated reports could be created in regular time intervals. 
Another example is the exchange of metaalerts between ID 
agents: Due to high communication costs, meta-alerts could 
be exchanged based on the evaluation of their interestingness. 
According to the task for which meta-alerts are used, they 
may contain different attributes. Examples for those attributes 
are aggregated alert attributes (e.g., lists or intervals of source 
addresses or targeted service ports, or a time interval that 
marks the beginning and the end—if available—of the attack 
instance), attributes extracted from the probabilistic model 
(e.g., the distribution parameters or the number of alerts 
assigned to the component), an aggregated alert assessment 
provided by the detection layer (e.g., the attack type 
classification or the classification confidence), and also 
information about the current attack situation (e.g., the 
number of recent attacks of the same or a similar type, links 
to attacks originating from the same or a similar source). 
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3. CONCLUSION 
We analyzed three different data sets and showed that 
machine-learning-based detectors, conventional signature 
based detectors, and even firewalls can be used as alert 
generators. In all cases, the amount of data could be reduced 
substantially. Although there are situations as  described in 
Section 2.2—especially clusters that are wrongly split—the 
instance detection rate is very high: None or only very few 
attack instances were missed. Runtime and component 
creation delay are well suited for an online application. 
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