
Online Intrusion Alert Aggregation Using
DGDSM Approach

J.Poongodi1, Mrs.C.Vimalarani2, Dr.S.Karthik3

CSE, SNS College of Technology,
 Coimbatore,India.

Abstract: - Alert aggregation is an important subtask of
intrusion detection. The goal is to identify and to cluster
different alerts—produced by low-level intrusion detection
systems, firewalls, etc.—belonging to a specific attack instance
which has been initiated by an attacker at a certain point in
time. Thus, meta-alerts can be generated for the clusters that
contain all the relevant information whereas the amount of data
(i.e., alerts) can be reduced substantially. Meta-alerts may then
be the basis for reporting to security experts or for
communication within a distributed intrusion detection system.
We propose a novel technique for online alert aggregation which
is based on a dynamic, probabilistic model of the current attack
situation. Basically, it can be regarded as a data stream version
of a maximum likelihood approach for the estimation of the
model parameters. With three benchmark data sets, we
demonstrate that it is possible to achieve reduction rates of up to
99.96 percent while the number of missing meta-alerts is
extremely low. In addition, meta-alerts are generated with a
delay of typically only a few seconds after observing the first
alert belonging to a new attack instance.

Index Terms—Intrusion detection, alert aggregation, generative
modeling, data stream algorithm.

1. INTRODUCTION
INTRUSION detection systems (IDS) are besides other
protective measures such as virtual private networks,
authentication mechanisms, or encryption techniques very
important to guarantee information security. They help to
defend against the various threats to which networks and
hosts are exposed to by detecting the actions of attackers or
attack tools in a network or host-based manner with misuse or
anomaly detection techniques.
At present, most IDS are quite reliable in detecting suspicious
actions by evaluating TCP/IP connections or log files, for
instance. Once an IDS finds a suspicious action, it
immediately creates an alert which contains information
about the source, target, and estimated type of the attack (e.g.,
SQL injection, buffer overflow, or denial of service). As the
intrusive actions caused by a single attack instance which is
the occurrence of an attack of a particular type that has been
launched by a specific attacker at a certain point in time—are
often spread over many network connections or log file
entries, a single attack instance often results in hundreds or
even thousands of alerts.

In our opinion, a “perfect” IDS should be situation-aware in
the sense that at any point in time it should “know” what is
going on in its environment regarding attack instances (of
various types) and attackers. In this paper, we make an
important step toward this goal by introducing and evaluating
a new technique for alert aggregation. Alerts may originate
from low-level IDS such as those mentioned above, from
firewalls (FW), etc. Alerts that belong to one attack instance
must be clustered together and meta- alerts must be generated
for these clusters. The main goal is to reduce the amount of
alerts substantially without losing any important information
which is necessary to identify ongoing attack instances. We
want to have no missing metaalerts, but in turn we accept
false or redundant meta-alerts to a certain degree.
This problem is not new, but current solutions are typically
based on a quite simple sorting of alerts, e.g., according to
their source, destination, and attack type. Under real
conditions such as the presence of classification errors of the
low-level IDS (e.g., false alerts), uncertainty with respect to
the source of the attack due to spoofed IP addresses, or
wrongly adjusted time windows, for instance, such an
approach fails quite often.

Our approach has the following distinct properties:
 It is a generative modeling approach using

probabilistic methods. Assuming that attack instances
can be regarded as random processes “producing” alerts,
we aim at modeling these processes using approximative
maximum likelihood parameter estimation techniques.
Thus, the beginning as well as the completion of attack
instances can be detected.

 It is a data stream approach, i.e., each observed alert is
processed only a few times. Thus, it can be applied
online and under harsh timing constraints.

2 A NOVEL ONLINE ALERT AGGREGATION TECHNIQUES

In this section, we describe our new alert aggregation
approach which is—at each point in time—based on a
probabilistic model of the current situation.
2.1 Collaborating Intrusion Detection Agents
In our work, we focus on a system of structurally very similar
so-called intrusion detection (ID) agents. Through self-
organized collaboration, these ID agents form a distributed
intrusion detection system (DIDS).

J. Poongodi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4629 - 4632

4629

Fig. 1 outlines the layered architecture of an ID agent: The
sensor layer provides the interface to the network and the
host on which the agent resides. Sensors acquire raw data
from both the network and the host, filter incoming data, and
extract interesting and potentially valuable (e.g., statistical)
information which is needed to construct an appropriate
event. At the detection layer, different detectors, e.g.,
classifiers trained with machine learning techniques such as
support vector machines (SVM) or conventional rule-based
systems such as Snort, assess these events and search for
known attack signatures (misuse detection) and suspicious
behavior (anomaly detection). In case of attack suspicion,
they create alerts which are then forwarded to the alert
processing layer.
The overall architecture of the distributed intrusion detection
system and a framework for large-scale simulations are
described in] in more detail.

In our layered ID agent architecture, each layer assesses,
filters, and/or aggregates information produced by a lower
layer. Thus, relevant information gets more and more
condensed and certain, and, therefore, also more valuable.
We aim at realizing each layer in a way such that the recall of
the applied techniques is very high, possibly at the cost of a
slightly poorer precision . In other words, with the alert
aggregation module—on which we focus in this paper—we
want to have a minimal number of missing meta-alerts (false
negatives) and we accept some false meta alerts (false
positives) and redundant meta-alerts in turn.
2.2 Offline Alert Aggregation
In this section, we introduce an offline algorithm for alert
aggregation which will be extended to a data stream
algorithm for online aggregation in next Section.
Assume that a host with an ID agent is exposed to a certain
intrusion situation as sketched in Fig. 2: One or several
attackers launch several attack instances belonging to various
attack types. The attack instances each cause a number of
alerts with various attribute values. Only two of the attributes
are shown and the correspondence of alerts and (true or
estimated) attack instances is indicated by different symbols.
Fig. 2a shows a view on the “ideal world” which an ID agent
does not have. The agent only has observations of the
detectors (alerts) in the attribute space without attack instance
labels as outlined in Fig. 2b. The task of the alert aggregation
module is now to estimate the assignment to instances by
using the unlabeled observations only and by analyzing the
cluster structure in the attribute space. That is, it has to
reconstruct the attack situation. Then, meta-alerts can be
generated that are basically an abstract description of the
cluster of alerts assumed to originate from one attack
instance. Thus, the amount of data is reduced substantially
without losing important information. Fig. 2c shows the result
of a reconstruction of the situation. There may be different
potentially problematic situations:

J. Poongodi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4629 - 4632

4630

1. False alerts are not recognized as such and wrongly
assigned to clusters: This situation is acceptable as long
as the number of false alerts is comparably low.

2. True alerts are wrongly assigned to clusters: This
situation is not really problematic as long as the majority
of alerts belonging to that cluster is correctly assigned.
Then, no attack instance is missed.

3. Clusters are wrongly split: This situation is undesired but
clearly unproblematic as it leads to redundant meta-alerts
only. Only the data reduction rate is lower, no attack
instance is missed.

4. Several clusters are wrongly combined into one: This
situation is definitely problematic as attack instances
may be missed.

2.3 Data Stream Alert Aggregation
In this section, we describe how the offline approach is
extended to an online approach working for dynamic attack
situations.
Assume that in the environment observed by an ID agent
attackers initiate new attack instances that cause alerts for a
certain time interval until this attack instance is completed.
Thus, at any point in time the ID agent—which is assumed to
have a model of the current situation, cf. Fig. 3a—has several
tasks, cf. Fig. 3b:
1. Component adaption: Alerts associated with already

recognized attack instances must be identified as such
and assigned to already existing clusters while adapting
the respective component parameters.

2. Component creation (novelty detection): The occurrence
of new attack instances must be stated. New components
must be parameterized accordingly.

3. Component deletion (obsoleteness detection): The
completion of attack instances must be detected and the
respective components must be deleted from the model.

That is, the ID agent must be situation-aware and try to keep
his model of the current attack situation permanently up
to date see Fig. 3c.

2.4 Meta-Alert Generation and Format
With the creation of a new component, an appropriate
metaalert that represents the information about the
component in an abstract way is created. Every time a new
alert is added to a component, the corresponding meta-alert is
updated incrementally, too. That is, the meta-alert “evolves”
with the component. Meta-alerts may be the basis for a whole
set further tasks (cf. Fig. 1): .
 Sequences of meta-alerts may be investigated further in

order to detect more complex attack scenarios (e.g., by
means of hidden Markov models).

 Meta-alerts may be exchanged with other ID agents in
order to detect distributed attacks such as one-to many
attacks.

 Based on the information stored in the meta-alerts,
reports may be generated to inform a human security
expert about the ongoing attack situation.

Meta-alerts could be used at various points in time from the
initial creation until the deletion of the corresponding
component (or even later). For instance, reports could be
created immediately after the creation of the component or—
which could be more preferable in some cases—a sequence
of updated reports could be created in regular time intervals.
Another example is the exchange of metaalerts between ID
agents: Due to high communication costs, meta-alerts could
be exchanged based on the evaluation of their interestingness.
According to the task for which meta-alerts are used, they
may contain different attributes. Examples for those attributes
are aggregated alert attributes (e.g., lists or intervals of source
addresses or targeted service ports, or a time interval that
marks the beginning and the end—if available—of the attack
instance), attributes extracted from the probabilistic model
(e.g., the distribution parameters or the number of alerts
assigned to the component), an aggregated alert assessment
provided by the detection layer (e.g., the attack type
classification or the classification confidence), and also
information about the current attack situation (e.g., the
number of recent attacks of the same or a similar type, links
to attacks originating from the same or a similar source).

J. Poongodi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4629 - 4632

4631

3. CONCLUSION
We analyzed three different data sets and showed that
machine-learning-based detectors, conventional signature
based detectors, and even firewalls can be used as alert
generators. In all cases, the amount of data could be reduced
substantially. Although there are situations as described in
Section 2.2—especially clusters that are wrongly split—the
instance detection rate is very high: None or only very few
attack instances were missed. Runtime and component
creation delay are well suited for an online application.

REFERENCES
1) S. Axelsson, “Intrusion Detection Systems: A Survey and Taxonomy,”

Technical Report 99-15, Dept. of Computer Eng., Chalmers Univ. of
Technology, 2000.

2) M.R. Endsley, “Theoretical Underpinnings of Situation Awareness: A
Critical Review,” Situation Awareness Analysis and Measurement,
M.R. Endsley and D.J. Garland, eds., chapter 1, pp. 3-32, Lawrence
Erlbaum Assoc., 2000.

3) C.M. Bishop, Pattern Recognition and Machine Learning.
Springer,2006.

4) M.R. Henzinger, P. Raghavan, and S. Rajagopalan, Computing on Data
Streams. Am. Math. Soc., 1999.

5) A. Allen, “Intrusion Detection Systems: Perspective,” Technical Report
DPRO-95367, Gartner, Inc., 2003.

6) F. Valeur, G. Vigna, C. Kru¨ gel, and R.A. Kemmerer, “A
Comprehensive Approach to Intrusion Detection Alert Correlation,”
IEEE Trans. Dependable and Secure Computing, vol. 1, no. 3, pp. 146-
169, July-Sept. 2004.

J. Poongodi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4629 - 4632

4632

